发表论文情况: [1] Ou,   J. Li, H., Huang, G. Yang, G. (2020).Intelligent analysis of tool wear state   using stacked denoising autoencoder with online sequential-extreme learning   machine [J]. Measurement, 2020, 167.(SCI源刊); [2] Ou, J. Li,   H., Huang, G. (2020). A novel order analysis and stacked sparse auto-encoder   feature learning method for milling  tool wear condition monitoring [J],   Sensors, 2020, 10(20).(SCI源刊); [3] Ou, J. Li,   H., Huang, G. (2021). Tool wear recognition based on deep kernel autoencoder   with multichannel signals fusion [J]. IEEE Transactions on Instrumentation   and Measurement, 2021, 70, 1-9. (SCI源刊); [4] Ou, J. Li,   H., Liu, B. (2022). Deep transfer residual variational autoencoder with   multi-sensors fusion for tool condition monitoring in impeller machining [J],   Measurement, 2022, 11(30).(SCI源刊); [5] Ou, J. Li,   H., Wang, Z. (2022). Tool wear recognition and signals labeling with small   cross labeled samples in impeller machining [J]. The International Journal of   Advanced Manufacturing Technology, 2022. 123: 3845-3856.(SCI源刊); [6] Li, H.,   Ou, J. Zhao, X. (2021). Intelligent identification of rotating stall for   centrifugal compressor based on pressure pulsation signals and SDKAE network   [J]. Journal of Dynamics, Monitoring and Diagnostics, 2022. 1(3), 169–175。  |